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Abstract. The electric and weak electric dipole form factors for heavy fermions are calculated in the
context of the most general two Higgs doublet model (2HDM). We find that a large top mass can produce
a significant enhancement of the electric dipole form factor in the case of the b and c quarks. This effect
can be used to distinguish between different 2HDM scenarios.

1 Introduction

One of the simplest extensions of the standard electroweak
model (SM) is the so-called two Higgs doublet model
(2HDM), in which the new ingredient is the presence of
a second doublet of scalar fields. The inclusion of these
new fields implies various phenomenological consequences,
which have led the 2HDM to be subject of analysis during
the last two decades.

We concentrate here on one of the most interesting fea-
tures concerning the 2HDM, which is the presence of dif-
ferent sources of CP violation beyond the standard δCKM
phase in the quark-mixing matrix. In particular, we an-
alyze the effects of the new parameters of the model on
the CP -violating electric and weak electric dipole form
factors for heavy fermions. The interest in these observ-
ables has increased in recent years, in view of the ongoing
activity both in the theoretical and in the experimental
areas [1–3]. SM predictions for CP -odd dipole moments
are extremely small, and this opens the possibility for one-
loop effects coming from extended models to show up [4,
5]. Specific observables have been proposed and studied
in the literature [1,2,6], and some bounds have already
been obtained from experimental measurements in e+e−
collisions [3,7].

If done in a completely general way, the addition of a
second scalar doublet to the SM Lagrangian is problem-
atic: one immediately finds that a general 2HDM model
contains tree-level flavor-changing neutral currents
(FCNC), which are strongly suppressed phenomenologi-
cally. To avoid this problem, it is usual to introduce ad
hoc discrete symmetries, in such a way that all fermions
of a given charge couple to only one of the doublets [8].
This can be done in different ways, leading to the so-called
2HDM I and II. It is often said that the obtained flavor
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conservation is “natural”. The inclusion of discrete sym-
metries, however, is not the only way of preventing the
undesired FCNC [9–11]. In fact, the presence of strong hi-
erarchies in the fermion masses and mixing angles seems
to be a clear signature of an underlying theory of flavor be-
yond the SM Yukawa couplings. From this point of view,
it can be also “natural” to expect that the suppression
of FCNC observed at low energies could be explained in
the context of this by now unknown theory. On the other
hand, whereas the phenomenological constraints on FCNC
are very stringent for processes which involve the first fam-
ily of quarks and leptons, this is not the case if one consid-
ers only the mixing between the second and third fermion
families. One possibility is to assume that the suppression
of FCNC is related to the masses of the involved fermions,
as has been proposed by several authors [10,11].

Here, instead of choosing a particular Ansatz to enforce
the suppression of tree-level FCNC, we will consider a
completely general 2HDM, using a convenient para-
metrization to take into account the existing phenomeno-
logical constraints. As has been pointed out recently [12],
the various sources of CP violation can be classified into
four classes:
(1) CP violation in charged and neutral flavor-conserving

scalar exchange;
(2) CP violation in neutral flavor-changing scalar

exchange;
(3) CP violation in the neutral scalar mixing matrix;
(4) CP violation in charged gauge boson exchange (the

usual CKM mechanism).
It is clear that particular 2HDMs show in general differ-
ent patterns for these CP violation sources. In this paper
we analyze and compute the 2HDM predictions for the
flavor-diagonal CP -odd couplings of heavy fermions, both
quarks and leptons, to the neutral gauge bosons γ and Z.
For on-shell fermions and gauge bosons, the correspond-
ing f̄fγ and f̄fZ form factors are known as the electric
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dipole moment (EDM) and weak electric dipole moment
(WEDM) of the fermion f , respectively. The presence of
a nonvanishing dipole moment of this kind is a signal of
time reversal symmetry violation, and in our framework,
of CP violation. In general, the form factors are gauge
invariant quantities – and can be contrasted with experi-
ment – only when the external fermions and gauge bosons
are on the mass shell. However, it can be seen that in the
2HDM the one-loop predictions for the electric and weak
electric dipole form factors are still gauge invariant when
the gauge bosons are off-shell.

We will present the analysis for the CP -violating
dipole form factors in the general 2HDM case, and then
apply the results to models which include discrete symme-
tries and models in which the magnitude of the FCNC is
related to the masses of the fermions involved. As stated,
the fermion electric and weak electric dipole form factors
are nonzero only at high orders in the SM, whereas 2HDM
give rise in general to nonvanishing contributions at the
level of one loop. Therefore, they represent good candi-
dates for an observation of CP -odd effects arising from an
extended scalar sector. In the case of heavy fermions, the
effects are particularly important, since the new (scalar-
mediated) contributions are proportional to nonnegative
powers of the fermion masses.

The paper is organized as follows: in Sect. 2, the no-
tation and the general 2HDM considered in this work are
presented. The analytical and numerical results for the
CP -violating form factors are given in Sect. 3, while Sect. 4
contains our conclusions. In the Appendix we quote some
explicit expressions for the Feynman integrals used in our
analysis.

2 Model

As stated, we here consider a completely general 2HDM,
allowing in principle for the presence of tree-level FCNC.
We adopt in the following the notation introduced in [12],
where the most general Higgs potential is parametrized as

V (φ1, φ2) = −µ2
1φ

†
1φ1 − µ2

2φ
†
2φ2 − (µ2

12φ
†
1φ2 + h.c.)

+λ1(φ
†
1φ1)2 + λ2(φ

†
2φ2)2 + λ3(φ

†
1φ1φ

†
2φ2)

+λ4(φ
†
1φ2φ

†
2φ1) +

1
2

[
λ5(φ

†
1φ2)2 + h.c.

]
+
[
(λ6φ

†
1φ1 + λ7φ

†
2φ2)(φ

†
1φ2) + h.c.

]
, (1)

and the neutral scalars acquire vacuum expectation values

〈φ0
1〉 =

v√
2
eiδ cos β, 〈φ0

2〉 =
v√
2

sinβ. (2)

In order to write the scalar–fermion couplings, it is con-
venient to introduce a new basis for the scalars, namely

φ1 = eiδ(cos βΦ1 + sinβΦ2),
φ2 = sinβΦ1 − cos βΦ2 (3)

with

Φ1 =

(
G+

(v + H0 + iG0)/
√

2

)
,

Φ2 =

(
H+

(R + iI)/
√

2

)
. (4)

It is easy to see that H± are physical charged scalar par-
ticles, while G± and G0 are the Goldstone bosons corre-
sponding to the spontaneous gauge symmetry breakdown.
The remaining neutral scalars H0, R and I are not in gen-
eral mass eigenstates. In terms of these fields, the scalar–
fermion couplings can be written as

LY = −(
√

2GF )1/2(L(nt) +
√

2L(ch)), (5)

with

L(nt) = (ŪLMuUR + D̄LMdDR + L̄LM lLR)H0

+(D̄LΓ dDR + L̄LΓ lLR)(R + iI)
+ŪLΓuUR(R− iI) + h.c.,

L(ch) = ŪLVCKMΓ dDRH+ − D̄LV †
CKMΓuURH−

+N̄LVlΓ
lLRH+ + h.c., (6)

where we have used the definitions U = (u, c, t)T, D =
(d, s, b)T, L = (e, µ, τ)T and N = (νe, νµ, ντ )T. The cou-
plings of the Goldstone bosons G0 and G± are the stan-
dard ones. As we have checked that they do not contribute
to the form factors we are interested in, we have not
written them explicitly in the Lagrangian (6). As usual,
the Mf with f = u, d, l stand for the quark and lep-
ton diagonal mass matrices and VCKM is the Cabibbo–
Kobayashi–Maskawa matrix (the subindex CKM will be
omitted in the following to simplify the notation), whereas
Γ f , f = u, d, l are arbitrary 3 × 3 complex matrices that
arise from the extended Yukawa couplings. It is useful
to distinguish between the diagonal and nondiagonal ele-
ments of Γ f , defining [12]

(
Γ f
)
ij

=

{
ξfi

mfi
, i = j

µf
ij , i 6= j

, (7)

where ξfi
and µf

ij are in general complex numbers. The
parameters µf

ij are responsible for the tree-level flavor-
changing neutral currents.

Nonzero phases in ξfi
and µf

ij represent new sources of
CP violation beyond the standard δCKM phase in V . In
addition, a further source of CP violation arises from the
neutral scalar mixing: in the limit where CP is conserved,
the CP -even states H0 and R do not mix with I, which
is CP -odd; however, the nonhermitian terms in the Higgs
potential can induce either explicit or spontaneous CP vi-
olation [the latter arises from the phase δ in (2)]. Then, in
general, one expects the neutral scalars to become mixed.
The physical neutral mass eigenstates H0

i (i = 1, 2, 3) can
be written as

H0
i =

∑
S=H0,R,I

OSiS, (8)
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O being an orthogonal (real) matrix. It is clear that in
general the H0

i are not eigenstates of CP .
With the introduction of discrete symmetries to pre-

vent FCNC, the above general structure becomes simpli-
fied. By requiring the Yukawa couplings to be invariant
under the changes

φ1 → −φ1, φ2 → φ2,

DRi → −DRi, LRi → −LRi, (9)

together with URi → −URi (URi → URi), one obtains the
so-called 2HDM I (II). The 3 × 3 Γ matrices in (6) are
then given by

Γ d,l = tanβMd,l, Γu =

{
tanβMu (model I)
− cot βMu (model II)

. (10)

If the Higgs potential is also invariant under the transfor-
mations (9), all CP -violating terms in (1) turn out to be
forbidden. However, one can allow for a soft breakdown
of the discrete symmetry, retaining the CP violation only
through the coupling with µ2

12 in (1). The electric and
weak electric dipole form factors for the top quark have
been analyzed within this scheme in [4]. Notice that, in
this case, the parameters in (7) satisfy Imξfi

= µf
ij = 0,

so that the only source of CP violation beyond the SM is
the mixing of CP -even and CP -odd fields in (8).

As commented on above, some models imply specific
relations between the magnitude of the FCNC and the
masses of the involved fermions. One usual Ansatz is that
proposed by Cheng and Sher [10], in which the matrix
elements of Γu,d are governed by the order of magnitude
of the fermion masses, obeying

Γu,d
ij = λij

√
mimj , (11)

with λij not far from unity. In general, if the lightest scalar
masses are assumed to be in the region of a few hundreds
GeV, bounds from ∆F = 2 processes (F = S, C, B) con-
strain the couplings λsd, λsb and λuc to be . 0.1 [13].
Nevertheless, the presently available experimental infor-
mation does not provide such a kind of constraints for
λct, which in principle is allowed to be O(1). Phenomeno-
logical consequences of having large c–t flavor-changing
couplings have been studied recently by several authors
[14]. We show below that the assumption of the Cheng–
Sher Ansatz of (11) with λct ∼ 1 leads to a significant
enhancement in the electric dipole form factors of the c
quark.

3 Analytical and numerical results
for CP -violating dipole form factors

The most general Lorentz invariant matrix element for the
interaction of a gauge boson B with two on-shell fermions
f , f̄ can be written as

〈f(p−)f̄(p+)|Jµ
B(0)|B(q)〉

H0

i

f �f

Z; 

(a)

H�
f �f

Z; 

(b)

H� H�

f �f

Z; 

(c)

Z

Z H0

i

f �f

(d)

Z

H0

i
H0

j

f �f

(e)

Fig. 1a–e. One-loop contributions to the form factors F Z
E (q2)

and F γ
E(q2) in the 2HDM

= i eūf (p−)
[
FB,f

V (q2)γµ + FB,f
A (q2)γµγ5

+
(
FB,f

S (q2) + FB,f
AN (q2)γ5

)
qµ

+
(
FB,f

M (q2) + FB,f
E (q2)γ5

)
σµνqν

]
vf (p+), (12)

where q ≡ p+ + p−, e is the proton charge and the coeffi-
cients FB,f

j , so-called form factors, are in general functions
of q2. At the tree level, only the vector and axial vector
form factors can be different from zero in a gauge theory.

The last two coefficients, FB,f
M and FB,f

E , are known
as magnetic (weak magnetic) and electric (weak electric)
dipole form factors when one considers the coupling with
the gauge boson B = γ (B = Z). Both FB,f

M and FB,f
E

are chirality-flipping quantities. Here we are interested in
particular in FB,f

E , which is CP -odd and vanishing small
in the SM. We remark that within the SM all the above
form factors FB,f

i (q2) are gauge independent only when
the gauge boson B is on-shell. In this case, FB,f

E is called
the electric (B = γ) or weak electric (B = Z) dipole
moment of the fermion f .

We will analyze the values of FB,f
E (q2) (B = γ, Z) for

heavy fermions in the 2HDM. Within these models one
gets in general contributions already at the one-loop level,
and the form factors are still gauge invariant when the
gauge bosons are off-shell. Since these contributions are
due to the exchange of neutral and charged Higgs bosons
(which carry the CP -violation effects beyond the SM),
and the Higgs–fermion couplings are proportional to the
corresponding fermion masses, only heavy fermions are
expected to yield significant effects. We will concentrate
in particular on the electric and weak electric form factors
for the τ lepton and the t, b and c quarks.

In the most general 2HDM, the relevant diagrams that
contribute to FB,f

E at one loop are shown in Fig. 1 [notice
that those in Fig. 1d and e only contribute to the Zf̄f form
factor]. Let us begin by quoting the results for FZ,f

E (q2),
f being an up-like quark. The contributions from the di-
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agrams of Fig. 1a–e are given by

(a) FZ,f
E (q2) =

2
√

2GF

sin θW cos θW
gu

V

×
∑

f ′=u,c,t

mf ′

3∑
j=1

[
m2

fOH0jδff ′

×(ImξfORj − ReξfOIj)
−Re(Γu

ff ′Γu
f ′f )ORjOIj

+
1
2
Im(Γu

ff ′Γu
f ′f )

(
(ORj)2 − (OIj)2

) ]
×I(I)(mf , mf ′ , mH0

j
, q2) (13a)

(b) FZ,f
E (q2) =

2
√

2GF

sin θW cos θW
gd

V

×
∑

f ′=d,s,b

mf ′Im
[
(Γu†V )ff ′(V Γ d)∗

ff ′)
]

×I(I)(mf , mf ′ , mH± , q2) (13b)

(c) FZ,f
E (q2) =

2
√

2GF

sin θW cos θW
gh

×
∑

f ′=d,s,b

mf ′Im
[
(Γu†V )ff ′(V Γ d)∗

ff ′)
]

×I(II)(mf , mf ′ , mH± , q2) (13c)

(d) FZ,f
E (q2) =

2
√

2GF

sin θW cos θW
gu

V m2
Zmf

×
3∑

j=1

(ImξfORj − ReξfOIj)OH0j

×I(III)(mf , mH0
j
, q2) (13d)

(e) FZ,f
E (q2) =

√
2GF

2 sin θW cos θW
mf

×
∑

f ′=u,c,t

(|µff ′ |2 − |µf ′f |2
)

×
∑
k<j

(ORjOIk −OIjORk)

× (ORjORk + OIjOIk)

×I(IV)(mf , mf ′ , mH0
j
, mH0

k
, q2) (13e)

where

gu
V = (

1
2
− 4

3
sin2 θW), gd

V = (−1
2

+
2
3

sin2 θW),

gh = (−1
2

+ sin2 θW),

and the Feynman integrals I(i) are quoted in Appendix A.
The gauge invariance of the form factors has been explic-
itly checked. For down-like quarks and leptons, the result-
ing expressions are similar to those in (13). In the case of
the down quarks these are obtained just by replacing

Γu, gu
V ←→ Γ d, gd

V ,

∑
f ′=u,c,t

←→
∑

f ′=d,s,b

OIj −→ −OIj ,

gh −→ −gh,

V −→ V †. (14)

For the charged leptons, the diagrams in Fig. 1b and c
are zero in the limit of vanishing neutrino masses. The
remaining contributions can be obtained from those in
(13) through the changes

gu
V −→ gl

V ,∑
f ′=u,c,t

−→
∑

f ′=e,µ,τ

,

OIj −→ −OIj , (15)

where gl
V = −1/2 + 2 sin2 θW.

Finally, the contributions to the electric dipole form
factors F γ,f

E are also easily obtained from the correspond-
ing expressions for FZ,f

E . In this case the rule simply con-
sists in the replacements

gf
V

sin θW cos θW
−→ 2Qf ,

gh

sin θW cos θW
−→ 1 (16)

for f = u, d, l. As stated, the diagrams in Fig. 1d and e do
not contribute to F γ,f

E .
Now we can make use of these results to evaluate the

leading contributions to the electric and weak electric
dipole form factors for the t, b and c quarks and the τ
lepton. The final expressions can be written as

FZ,t
E (q2) =

3∑
j=1

(
aZ,t

j αt
j + dZ,t

j γt
j

)
,

F γ,t
E (q2) =

3∑
j=1

aγ,t
j αt

j ,

FZ,b
E (q2) = (b + c)Z,bβb +

3∑
j=1

dZ,b
j γb

j ,

F γ,b
E (q2) = (b + c)γ,bβb +

3∑
j=1

aγ,b
j αb

j ,

FZ,τ
E (q2) =

3∑
j=1

dZ,τ
j γτ

j ,

F γ,τ
E (q2) =

3∑
j=1

aγ,τ
j ατ

j ,

FZ,c
E (q2) =

3∑
j=1

(
a′

j
Z,c

α′
j
c + dZ,c

j γc
j

)
,

F γ,c
E (q2) =

3∑
j=1

(
aγ,c

j αc
j + a′

j
γ,c

α′
j
c)+ (b′ + c′)γ,cβ′c. (17)
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Table 1. Dominant coefficients for F Z,t
E (s) and F γ,t

E (s) for different values of s and the Higgs mass
mH . All values are in units of ecm

s1/2 = 500GeV s1/2 = 1800GeV
mH = 100GeV mH = 200GeV mH = 100GeV mH = 200GeV

aZ,t (−0.1 + 1.4i) × 10−19 (0.2 + 1.0i) × 10−19 (−1.2 + 1.0i) × 10−20 (−1.0 + 1.0i) × 10−20

dZ,t (1.0 − 2.8i) × 10−20 (0.8 − 3.5i) × 10−20 (3.1 − 2.6i) × 10−21 (3.0 − 2.6i) × 10−21

aγ,t (−0.3 + 4.1i) × 10−19 (0.6 + 2.9i) × 10−19 (−3.4 + 2.9i) × 10−20 (−2.9 + 2.7i) × 10−20

Table 2. Dominant coefficients for F Z,b
E (s) and F γ,b

E (s) for mH = 100 and 200GeV and different values of
s. All values are in units of ecm

s1/2 = 10GeV s1/2 = mZ s1/2 = 170GeV s1/2 = 500GeV

mH = 100GeV
(b + c)Z,b 5.0 × 10−21 5.1 × 10−21 5.7 × 10−21 (2.8 + 5.9i) × 10−21

dZ,b 3.6 × 10−21 4.0 × 10−21 6.3 × 10−21 (−1.1 + 1.8i) × 10−21

aγ,b (−0.8 −0.2i) × 10−22 (−0.7 − 2.6i) × 10−23 (0.2 − 1.4i) × 10−23 (2.1 − 2.7i) × 10−24

(b + c)γ,b 1.0 × 10−20 1.0 × 10−20 1.1 × 10−20 (0.5 + 1.3i) × 10−20

mH = 200GeV

(b + c)Z,b 3.0 × 10−21 3.1 × 10−21 3.3 × 10−21 (3.4 + 3.2i) × 10−21

dZ,b 2.0 × 10−21 2.1 × 10−21 2.4 × 10−21 (−0.5 + 2.5i) × 10−21

aγ,b (−2.3 −0.4i) × 10−23 (−0.6 − 0.9i) × 10−23 (−0.2 − 0.7i) × 10−23 (0.8 − 2.2i) × 10−24

(b + c)γ,b 6.5 × 10−21 6.6 × 10−21 7.0 × 10−21 (6.5 + 7.8i) × 10−21

In this parametrization, the dependence of FB,f
E on the

unknown quark mass-matrix parameters and Higgs-
mixing angles has been collected in the factors in Greek
letters, whereas the coefficients kB,f

j , with k = a, a′, · · · , d,
contain the global factors including gauge boson couplings
and fermion and Z masses, plus the Feynman integrals,
which depend on q2 and the masses of the Higgs bosons.
The letters a, b, c, d identify the diagram from which each
contribution originates, according to the notation in Fig. 1
and (13). We have distinguished with primes the contri-
butions that include tree-level flavor-changing effects.

In (17) we have quoted only the dominant terms aris-
ing from the expressions (13); hence the contributions
proportional to the light fermion masses have been ne-
glected. In addition, the contributions from the diagram
in Fig. 1e, which are proportional to the flavor-changing
parameters, have been neglected in comparison to flavor-
changing terms arising from the diagram in Fig. 1a [notice
that (13e) vanishes when the matrices Γ f are hermitian].

The explicit expressions for the factors in Greek letters
can easily be obtained from (13). We find

αf
j = OH0j [ORjImξf − εOIjReξf ]− εRe(ξ2

f )ORjOIj

+
1
2
Im(ξ2

f )
(
O2

Rj −O2
Ij

)
, (18a)

βb = −Im(ξtξb), (18b)

γf
j = OH0j (ORjImξf − εOIjReξf ) , (18c)

α′c = −Re(µctµtc)
mcmt

ORjOIj

+
1
2

Im(µctµtc)
mcmt

(O2
Rj −O2

Ij), (18d)

β′c =
√

mc

mt
|Vcb|2Im(ξcξb) +

√
ms

mb

Im(µtcµsbVcsV
∗
tb)√

msmcmbmt

+
Im(µtcξbVcbV

∗
tb)√

mcmt
, (18e)

where ε = +1 for f = u, t and ε = −1 for f = b, τ . If
we assume that |ξf | is not very different from one for all
fermions (as is the case in most models for the quark mass
matrices), all parameters in (18a)–(18c) are expected to
be O(1). Then, if no accidental cancellations occur, the
order of magnitude for the electric and weak electric dipole
form factors will be given by the coefficients kB,f

j in (17).
On the other hand, in the case of the c quark we have to
deal with contributions proportional to α′c and β′c, which
contain the flavor-changing parameters µct, µtc and µsb.
These contributions depend on the Ansatz chosen for the
quark-mass matrix, and can be very important due to the
large top-quark mass.

To estimate the order of magnitude of the CP -
violating form factors in different 2HDM scenarios, we
have numerically calculated the values of the coefficients
kB,f

j for different values of q2 and the Higgs masses. Our
results are presented in Tables 1–4. For the b, c, and τ form
factors we have chosen (q2)1/2 = 10, 92, 170 and 500 GeV,
corresponding to the approximate center-of-mass energies
in B-meson factories, LEP1, LEP2 and future e+e− collid-
ers, respectively. For the t quark we have taken (q2)1/2 =
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Table 3. Dominant coefficients for F Z,τ
E (s) and F γ,τ

E (s) for mH = 100 and 200GeV and different
values of s. All values are in units of ecm

s1/2 = 10GeV s1/2 = mZ s1/2 = 170GeV s1/2 = 500GeV

mH = 100GeV

dZ,τ 1.6 × 10−22 1.8 × 10−22 2.9 × 10−22 (−0.5 + 0.9i) × 10−22

aγ,τ (−1.2 − 0.7i) × 10−23 (−1.0 − 4.8i) × 10−24 (0.4 − 2.7i) × 10−24 (0.4 − 0.5i) × 10−24

mH = 200GeV

dZ,τ 0.9 × 10−22 0.9 × 10−22 1.1 × 10−22 (−0.2 + 1.1i) × 10−22

aγ,τ (−0.4 − 0.2i) × 10−23 (−1.1 − 1.6i) × 10−24 (0.4 − 1.2i) × 10−24 (0.1 − 0.4i) × 10−25

Table 4. Dominant coefficients for F Z,c
E (s) and F γ,c

E (s) for mH = 100 and 200GeV and different values
of s. All values are in units of ecm

s1/2 = 10GeV s1/2 = mZ s1/2 = 170GeV s1/2 = 500GeV

mH = 100GeV

a′Z,c 0.6 × 10−21 0.6 × 10−21 0.7 × 10−21 (0.2 + 1.0i) × 10−21

dZ,c −0.7 × 10−21 −0.7 × 10−21 −1.2 × 10−21 (2.0 − 3.5i) × 10−22

aγ,c (5.9 + 2.8i) × 10−24 (0.5 + 1.9i) × 10−24 (−0.1 + 1.1i) × 10−24 (−1.6 + 2.0i) × 10−25

a′γ,c 1.7 × 10−21 1.8 × 10−21 1.9 × 10−21 (.6 + 2.9i) × 10−21

(b′ + c′)γ,c (5.3 + 1.0i) × 10−24 (1.0 + 1.6i) × 10−24 (0.6 + 0.9i) × 10−24 (0.5 + 7.5i) × 10−25

mH = 200GeV

a′Z,c 4.4 × 10−22 4.6 × 10−22 4.9 × 10−22 (2.5 + 7.2i) × 10−22

dZ,c −3.7 × 10−22 −3.8 × 10−22 −4.4 × 10−22 (1.0 − 4.6i) × 10−22

aγ,c (1.6 + 0.7i) × 10−24 (4.3 + 6.4i) × 10−25 (1.4 + 5.0i) × 10−25 (−0.6 + 1.6i) × 10−25

a′γ,c 1.3 × 10−21 1.3 × 10−21 1.4 × 10−21 (0.7 + 2.1i) × 10−21

(b′ + c′)γ,c (1.6 + 0.3i) × 10−24 (0.5 + 0.5i) × 10−24 (2.7 + 4.1i) × 10−25 (−0.2 + 1.4i) × 10−25

Table 5. Expected order of magnitude for electric and weak electric form factors at q2 = m2
Z for the

τ lepton and the b and c quarks in 2HDM I/II and Cheng–Sher-like scenarios. Values are in units of
ecm

F Z,τ
E (m2

Z) F γ,τ
E (m2

Z) F Z,b
E (m2

Z) F γ,b
E (m2

Z) F Z,c
E (m2

Z) F γ,c
E (m2

Z)

2HDM I/II 10−22 10−24 10−21 10−23 10−21 10−24

Cheng–Sher 10−22 10−24 10−20–10−21 10−20 10−21–10−21|λct|2 10−21|λct|2

500 and 1800 GeV, the latter corresponding to the high-
energy p̄p collider at Fermilab. We have considered neutral
and charged scalar-boson masses of 100 and 200 GeV. In
general, the Feynman integrals are expected to be sup-
pressed if the masses of the scalars involved increase, so
that the sums in (17) should be dominated by the con-
tribution from the lightest Higgs. Notice that in the limit
where the neutral scalar sector is degenerate in mass, the
contributions from the diagrams Fig. 1a, d and e to both
the electric and weak electric dipole form factors vanish
owing to the orthogonality of the neutral-scalar mixing
matrix O.

The contributions of the different CP -violation sources
in the general 2HDM can be easily read from (18). Let
us come back to the classification presented in the intro-

duction: the CP violation in charged and neutral flavor-
conserving scalar exchange is contained in the imaginary
part of the parameters ξf , whereas the CP violation in
neutral flavor-changing scalar exchange is due to the imag-
inary part of µff ′ . The CP violation in the scalar mixing
matrix arises from the mixing between the CP -odd scalar
I and the CP -even fields H0 and R, that is, the prod-
ucts OH0jOIj and ORjOIj in (18). Finally, the δCKM CP -
violating phase in the V matrix only appears together with
tree-level flavor-changing parameters in (18e).

In Table 5, we quote the expected orders of magnitude
of the electric and weak electric form factors at q2 = m2

Z
for the τ lepton and the b and c quarks, in both 2HDM
I/II and Cheng–Sher-like scenarios. For the 2HDM I and
II, which include discrete symmetries to prevent FCNC,
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some of the contributions in (17) vanish. As stated in the
previous section, in this case Imξf = µff ′ = 0, hence
βf = α′f = β′f = 0, and the whole effect arises from the
CP violation in the Higgs-mixing matrix. On the contrary,
in the quark-mixing scheme proposed by Cheng and Sher,
all terms in (17) have to be considered if the λij parame-
ters of (11) are complex numbers of order one. For the case
of the b and c quarks, some of the terms that vanish in
the 2HDM I and II have relatively large coefficients, pro-
portional to the square of the top-quark mass. This shows
up in the value of the corresponding electric dipole form
factors, where the predictions in the Cheng–Sher scheme
are about three orders of magnitude higher than in the
2HDM I/II, as can be seen in Table 5. In the case of the
weak electric dipole form factors the effect is hidden due
to the presence of other important contributions propor-
tional to m2

Z .
For the top quark the CP -violating form factors in the

general 2HDM are dominated by the contributions of dia-
grams a and d in Fig. 1. These arise from flavor-conserving
neutral Higgs exchange, and do not vanish in general in
2HDM I and II. As stated in the previous section, FZ,t

E

and F γ,t
E have been analyzed previously for these models

in [4]. The values for FZ,t
E (q2) arising from (13a) and (13d)

and the equivalent expressions for F γ,t
E (q2) are in agree-

ment with the results obtained in that paper. In addition,
the CP -violating form factors for the top quark have been
analyzed in a more general context in [15]. There, the au-
thors consider a Cheng–Sher-like Ansatz for the Yukawa
couplings, and assume that there is no mixing between the
CP -odd and CP -even scalar fields. Hence they only ob-
tain the contributions proportional to Imξt and Im(ξ2

t ) in
(18a) and (18c). The order of magnitude found in [15] for
FZ,t

E and F γ,t
E for specific values of the Higgs parameters

and CP -violating phases (namely about 10−20 ecm for a
center-of-mass energy of 500 GeV) is consistent with our
results in Table 1.

The weak electric dipole moments of the τ lepton and b
quark have been also calculated recently within the min-
imal supersymmetric standard model (MSSM) [5]. The
results are similar to those obtained in our general 2HDM
scheme: |Re[FZ,τ

E (m2
Z)]| . 0.3(12) × 10−21 ecm,

|Re[FZ,b
E (m2

Z)]| . 1.4(35) × 10−21 ecm. In [5] the authors
also quote the values obtained for the top quark form
factors at (q2)1/2 = 500 GeV, which yield approximately
|FZ,t

E | ' |F γ,t
E | ' 10−19 ecm. Taking the corresponding

coefficients from Table 1, this order of magnitude agrees
with our results. Notice that in our analysis we have not
considered possible corrections arising from the running of
the quark masses (we have used the running masses mq in
the MS scheme, with µ = mq). In any case, these effects
would not modify the quoted orders of magnitude for the
values in Tables 1–5.

4 Conclusions

We compute the CP -violating electric and weak electric
dipole form factors for heavy fermions in the framework
of a completely general 2HDM. In spite of being one of
the simplest extensions of the SM, this model contains
interesting new features, such as the presence of various
sources of CP violation beyond the standard CKM mech-
anism. The CP -violating dipole form factors are vanish-
ingly small in the SM; thus they are good candidates to
provide observable signals of new physics. In the 2HDM,
at one loop, they are found to be finite and gauge invari-
ant quantities, even when the involved γ or Z bosons are
off-shell.

The effect of the different sources of CP violation on
the form factors for the c, b and t quarks and the τ lep-
ton is shown in (18). In particular, it is seen that some
of the contributions vanish for the so-called 2HDM I and
II, which include discrete symmetries to eliminate unde-
sired FCNC. In these models the only remaining terms are
those involving the mixing between CP -even and CP -odd
neutral scalars. In the general case, however, these sym-
metries may be not present. If no accidental cancellations
occur, this would imply an enhancement of three orders
of magnitude in the electric dipole form factor of the b
quark with respect to the prediction of 2HDM I and II for
energies in the GeV to TeV range. On the other hand, we
find that in the case of the c quark the electric dipole form
factor is strongly dependent on the presence of c–t flavor-
changing effects. Assuming an up-quark mass matrix of
the type proposed by Cheng and Sher, with λuc ∼ O(1),
the values for F γ,c

E for energies from 10 to 500 GeV can
be two to four orders of magnitude larger than those ob-
tained in 2HDM I or II. We conclude from this analysis
that the study of CP -violating dipole form factors can be
useful to get information on the flavor mixing, and that
it offers an interesting possibility to distinguish between
these and other possible 2HDM scenarios.
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Appendix A: Feynman integrals

The integrals I(i) introduced in (13) are defined as follows:

Re[I(I)(mq, mq′ , mφ, s)]

=
1

16π2 P.V.
∫ 1

0
dx

∫ 1−x

0
dy

x

f1(x, y)
, (A1)

f1(x, y) = m2
φ(1− x− y) + (m2

q′ −m2
q)(x + y)

+m2
q(x + y)2 − sxy,

Im[I(I)(mq, mq′ , mφ, s)]
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=
1

16πs

βq′

β2
q

{
1 +

1
βqβq′

(
β2

q − βq′2

4
− m2

φ

s

)

× log

(
s(βq + βq′)2 + 4m2

φ

s(βq − βq′)2 + 4m2
φ

)}
Θ(s− 4m2

q′), (A2)

Re[I(II)(mq, mq′ , mφ, s)]

=
1

16π2 P.V.
∫ 1

0
dx

∫ 1−x

0
dy

1− 2x

f2(x, y)
, (A3)

f2(x, y) = m2
q′(1− x− y) + (m2

φ −m2
q)(x + y)

+m2
q(x + y)2 − sxy,

Im[I(II)(mq, mq′ , mφ, s)]

= − 1
8πs

βφ

β2
q

{
1− 1

βqβφ

(
β2

q + β2
φ

4
+

m2
q′

s

)

× log

(
s(βq + βφ)2 + 4m2

q′

s(βq − βφ)2 + 4m2
q′

)}
Θ(s− 4m2

φ), (A4)

Re[I(III)(mq, mφ, s)]

= − 1
16π2 P.V.

∫ 1

0
dx

∫ 1−x

0
dy

y

f3(x, y)
, (A5)

f3(x, y) = m2
q(1− x− y)2 + m2

φx + m2
Zy − sxy,

Im[I(III)(mq, mφ, s)]

= − 1
16πs

{
bZ

β2
q

+
1

2βq

(
c− β2

q

β2
q

+
m2

Z −m2
φ

s

)

× log
∣∣∣∣c− bZβq

c + bZβq

∣∣∣∣
}

Θ[s− (mZ + mφ)2], (A6)

Re[I(IV)(mq, mq′ , mφ, mφ′ , s)] (A7)

= − 1
16π2 P.V.

∫ 1

0
dx

∫ 1−x

0
dy

(x− y)(1− x− y)
f4(x, y)

,

f4(x, y) = (m2
q′ −m2

q)(1− x− y) + m2
q(1− x− y)2

+m2
φx + m2

φ′y − sxy,

Im[I(IV)(mq, mq′ , mφ, mφ′ , s)]

= − 1
16π

(mφ −mφ′)
s2

×
{

2bφ′

β2
q

+
d

βq
log
∣∣∣∣d− bφ′βq

d + bφ′βq

∣∣∣∣
}

×Θ[s− (mφ + mφ′)2], (A8)

with

βa = (1− 4m2
a/s)1/2, a = q, q′, φ,

ba = [(1− (mφ + ma)2/s]1/2[1− (mφ −ma)2/s]1/2,

a = Z, φ′,
c = 1− (m2

φ + m2
Z)/s,

d = 1− (m2
φ + m2

φ′)/s− 2(m2
q −m2

q′)/s. (A9)

In these expressions we assume s > 4m2
q, which is valid

for all the numerical estimations that are presented in this
paper. The analytical results in (A2) and (A6) agree with
those presented in [4] in the limit βq′ = βq.
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